Subscribe To Get Latest Updates on mail !

& Follow us: facebooktwittergplusrss

Saturday, 28 September 2013

18.02 - Multivariable Calculus - MIT Video Lectures


18.02 Multivariable Calculus - MIT Video Lectures

Course Description :This course covers vector and multi-variable calculus. It is the second semester in the freshman calculus sequence. Topics include vectors and matrices, partial derivatives, double and triple integrals, and vector calculus in 2 and 3-space.
TOTAL LECTURES - 35
Download Link (MIT Lecture Notes):
> DOWNLOAD "18.02 - Multivariable Calculus - MIT Lecture Notes" <

Video Lecture Files h.264 Ogg Video Real Media MPEG4
Lecture 01: Dot product. 227.3 MB
163.8 MB
63.0 MB
Lecture 01: Dot product. 160.2 MB
84.3 MB
Lecture 02: Determinants; cross product. 310.9 MB
223.5 MB
86.2 MB
Lecture 02: Determinants; cross product. 217.2 MB
115.0 MB
Lecture 03: Matrices; inverse matrices. 300.8 MB
216.3 MB
83.2 MB
Lecture 03: Matrices; inverse matrices. 211.2 MB
111.3 MB
Lecture 04: Square systems; equations of planes. 288.9 MB
202.8 MB
79.9 MB
Lecture 04: Square systems; equations of planes. 196.3 MB
106.7 MB
Lecture 05: Parametric equations for lines and curves. 299.9 MB
213.6 MB
82.8 MB
Lecture 05: Parametric equations for lines and curves. 207.7 MB
110.6 MB
Lecture 06: Velocity, acceleration; Kepler's second law. 282.8 MB
197.5 MB
78.4 MB
Lecture 06: Velocity, acceleration; Kepler's second law. 191.1 MB
104.8 MB
Lecture 07: Review. 293.3 MB
205.4 MB
81.2 MB
Lecture 07: Review. 198.5 MB
108.6 MB
Lecture 08: Level curves; partial derivatives; tangent plane approximation. 272.1 MB
163.8 MB
75.3 MB
Lecture 08: Level curves; partial derivatives; tangent plane approximation. 157.0 MB
100.8 MB
Lecture 09: Max-min problems; least squares. 292.8 MB
200.2 MB
81.0 MB
Lecture 09: Max-min problems; least squares. 196.3 MB
108.2 MB
Lecture 10: Second derivative test; boundaries and infinity. 307.8 MB
211.1 MB
85.2 MB
Lecture 10: Second derivative test; boundaries and infinity. 205.1 MB
113.8 MB
Lecture 11: Differentials; chain rule. 295.3 MB
202.6 MB
81.7 MB
Lecture 11: Differentials; chain rule. 198.5 MB
109.4 MB
Lecture 12: Gradient; directional derivative; tangent plane. 295.8 MB
190.8 MB
81.8 MB
Lecture 12: Gradient; directional derivative; tangent plane. 185.6 MB
109.3 MB
Lecture 13: Lagrange multipliers. 295.3 MB
164.3 MB
81.8 MB
Lecture 13: Lagrange multipliers. 156.8 MB
109.3 MB
Lecture 14: Non-independent variables. 289.0 MB
188.0 MB
80.1 MB
Lecture 14: Non-independent variables. 183.3 MB
107.2 MB
Lecture 15: Partial differential equations; review. 267.1 MB
165.1 MB
74.0 MB
Lecture 15: Partial differential equations; review. 162.4 MB
99.1 MB
Lecture 16: Double integrals. 283.0 MB
186.8 MB
78.2 MB
Lecture 16: Double integrals. 182.9 MB
141.9 MB
Lecture 17: Double integrals in polar coordinates; applications. 303.6 MB
208.7 MB
82.3 MB
Lecture 17: Double integrals in polar coordinates; applications. 206.7 MB
155.4 MB
Lecture 18: Change of variables. 293.7 MB
193.3 MB
79.8 MB
Lecture 18: Change of variables. 190.3 MB
146.5 MB
Lecture 19: Vector fields and line integrals in the plane. 300.8 MB
202.1 MB
81.8 MB
Lecture 19: Vector fields and line integrals in the plane. 200.9 MB
154.3 MB
Lecture 20: Path independence and conservative fields. 296.5 MB
207.9 MB
80.5 MB
Lecture 20: Path independence and conservative fields. 205.3 MB
152.9 MB
Lecture 21: Gradient fields and potential functions. 294.8 MB
203.2 MB
80.2 MB
Lecture 21: Gradient fields and potential functions. 200.6 MB
151.8 MB
Lecture 22: Green's theorem. 274.5 MB
195.7 MB
74.7 MB
Lecture 22: Green's theorem. 191.5 MB
141.9 MB
Lecture 23: Flux; normal form of Green's theorem. 295.7 MB
203.2 MB
80.3 MB
Lecture 23: Flux; normal form of Green's theorem. 201.5 MB
151.9 MB
Lecture 24: Simply connected regions; review. 288.6 MB
205.0 MB
78.3 MB
Lecture 24: Simply connected regions; review. 201.0 MB
148.9 MB
Lecture 25: Triple integrals in rectangular and cylindrical coordinates. 287.0 MB
203.2 MB
77.8 MB
Lecture 25: Triple integrals in rectangular and cylindrical coordinates. 200.1 MB
148.0 MB
Lecture 26: Spherical coordinates; surface area. 300.5 MB
208.1 MB
81.6 MB
Lecture 26: Spherical coordinates; surface area. 205.6 MB
155.0 MB
Lecture 27: Vector fields in 3D; surface integrals and flux. 297.4 MB
209.7 MB
80.8 MB
Lecture 27: Vector fields in 3D; surface integrals and flux. 206.7 MB
153.3 MB
Lecture 28: Divergence theorem. 290.1 MB
201.6 MB
78.7 MB
Lecture 28: Divergence theorem. 198.8 MB
149.3 MB
Lecture 29: Divergence theorem (cont.): applications and proof. 295.5 MB
201.1 MB
80.3 MB
Lecture 29: Divergence theorem (cont.): applications and proof. 199.3 MB
151.3 MB
Lecture 30: Line integrals in space, curl, exactness and potentials. 292.1 MB
195.8 MB
79.4 MB
Lecture 30: Line integrals in space, curl, exactness and potentials. 197.2 MB
149.0 MB
Lecture 31: Stokes' theorem. 284.4 MB
184.2 MB
78.8 MB
Lecture 31: Stokes' theorem. 184.8 MB
142.8 MB
Lecture 32: Stokes' theorem (cont.); review. 295.1 MB
204.7 MB
81.7 MB
Lecture 32: Stokes' theorem (cont.); review. 202.2 MB
152.3 MB
Lecture 33: Topological considerations; Maxwell's equations. 168.7 MB
117.3 MB
46.7 MB
Lecture 33: Topological considerations; Maxwell's equations. 115.7 MB
86.7 MB
Lecture 34: Final review. 258.4 MB
181.9 MB
71.5 MB
Lecture 34: Final review. 178.3 MB
133.0 MB
Lecture 35: Final review (cont.). 287.9 MB
183.6 MB
79.6 MB
Lecture 35: Final review (cont.). 187.0 MB
146.6 MB

Prof. Denis Auroux, 18.02, Multivariable Calculus
(Massachusetts Institute of Technology: MIT OpenCouseWare), http://ocw.mit.edu (Accessed September 27, 2013). 
Our website abides by the Creative Commons BY-NC-SA as set by MIT.
Comments
0 Comments

0 comments:

Post a Comment

Please Comment With a Polite
1. No Pornography
2. No Spam, Spam comment will be deleted

Stay Tuned here for more updates. Don't forget to: SUBSCRIBE US | LIKE US

X